Abstract

To determine whether intrinsic mechanisms drive supraoptic nucleus oxytocin neuron excitation during morphine withdrawal, we calculated the probability of action potential (spike) firing with time after each spike for oxytocin neurons in morphine-naive and morphine-dependent rats in vivo and measured changes in intrinsic membrane properties in vitro. The opioid receptor antagonist, naloxone, increased oxytocin neuron post-spike excitability in morphine-dependent rats; this increase was greater for short interspike intervals (<0.1 s). Naloxone had similar, but smaller (P=0.04), effects in oxytocin neurons in morphine-naive rats. The increased post-spike excitability for short interspike intervals was specific to naloxone, because osmotic stimulation increased excitability without potentiating excitability at short interspike intervals. By contrast to oxytocin neurons, neither morphine dependence nor morphine withdrawal increased post-spike excitability in neighbouring vasopressin neurons. To determine whether increased post-spike excitability in oxytocin neurons during morphine withdrawal reflected altered intrinsic membrane properties, we measured the in vitro effects of naloxone on transient outward rectification (TOR) and after-hyperpolarization (AHP), properties mediated by K+ channels and that affect supraoptic nucleus neuron post-spike excitability. Naloxone reduced the TOR and AHP (by 20% and 60%, respectively) in supraoptic nucleus neurons from morphine-dependent, but not morphine-naive, rats. In vivo, spike frequency adaptation (caused by activity-dependent AHP activation) was reduced by naloxone (from 27% to 3%) in vasopressin neurons in morphine-dependent, but not morphine-naive, rats. Thus, multiple K+ channel inhibition increases post-spike excitability for short interspike intervals, contributing to the increased firing of oxytocin neurons during morphine withdrawal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.