Abstract

BackgroundEnvironmentally induced epigenetic changes can lead to health problems or disease, but the mechanisms involved remain unclear. Morphine can pass through the placental barrier leading to abnormal embryo development. However, the mechanism by which morphine causes these effects and how they sometimes persist into adulthood is not well known. To unravel the morphine-induced chromatin alterations involved in aberrant embryo development, we explored the role of the H3K27me3/PRC2 repressive complex in gene expression and its transmission across cellular generations in response to morphine.ResultsUsing mouse embryonic stem cells as a model system, we found that chronic morphine treatment induces a global downregulation of the histone modification H3K27me3. Conversely, ChIP-Seq showed a remarkable increase in H3K27me3 levels at specific genomic sites, particularly promoters, disrupting selective target genes related to embryo development, cell cycle and metabolism. Through a self-regulatory mechanism, morphine downregulated the transcription of PRC2 components responsible for H3K27me3 by enriching high H3K27me3 levels at the promoter region. Downregulation of PRC2 components persisted for at least 48 h (4 cell cycles) following morphine removal, though promoter H3K27me3 levels returned to control levels.ConclusionsMorphine induces targeting of the PRC2 complex to selected promoters, including those of PRC2 components, leading to characteristic changes in gene expression and a global reduction in H3K27me3. Following morphine removal, enhanced promoter H3K27me3 levels revert to normal sooner than global H3K27me3 or PRC2 component transcript levels. We suggest that H3K27me3 is involved in initiating morphine-induced changes in gene expression, but not in their maintenance.Graphic abstractModel of Polycomb repressive complex 2 (PRC2) and H3K27me3 alterations induced by chronic morphine exposure. Morphine induces H3K27me3 enrichment at promoters of genes encoding core members of the PRC2 complex and is associated with their transcriptional downregulation.

Highlights

  • Induced epigenetic changes can lead to health problems or disease, but the mecha‐ nisms involved remain unclear

  • Morphine induces targeting of the Polycomb repressive complex 2 (PRC2) complex to selected promoters, including those of PRC2 components, leading to characteristic changes in gene expression and a global reduction in H3K27me3

  • We suggest that H3K27me3 is involved in initiating morphine-induced changes in gene expression, but not in their maintenance

Read more

Summary

Introduction

Induced epigenetic changes can lead to health problems or disease, but the mecha‐ nisms involved remain unclear. Morphine can pass through the placental barrier leading to abnormal embryo devel‐ opment. The mechanism by which morphine causes these effects and how they sometimes persist into adulthood is not well known. Some epigenetic changes are essential for normal development and ageing, there is still limited understanding of how environmental factors can cause epigenetic changes that lead to. Prenatal developmental processes are highly sensitive to toxic chemicals and stress, indicating that environmental factors might cause disturbances in embryo development as well as organ malfunction after birth [3]. Previous studies have shown that morphine can pass through the placental barrier and reach the embryo [4, 5]. The mechanism by which morphine impacts the embryo is not well known

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call