Abstract
Acute injection of morphine induces expression of the immediate-early genes c-Fos and JunB in several forebrain regions of the rat, in part through an N-methyl- d-aspartate (NMDA) receptor-dependent mechanism. Because membrane depolarization through ( RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors is believed to be necessary for full activation of NMDA receptors, we determined the role of AMPA receptors in morphine-induced c-Fos expression. Rats were given the AMPA receptor antagonist GYKI-52466 (12.9 mg/kg, i.p.) 15 min before morphine (10 mg/kg, s.c.), or the AMPA receptor enhancer CX516 (30 mg/kg, i.p.) 5 min after morphine. The c-Fos response was attenuated by the antagonist and augmented by the enhancer. Using double immunocytochemistry, we found that morphine induced c-Fos in neurons containing the GluR2/3, but not the GluR1 and rarely the GluR4, subunits of the AMPA receptor. Double immunocytochemistry for μ opioid receptor and c-Fos showed that c-Fos expression was mainly absent in the patch compartment of the striatum, which is enriched in μ opioid receptors. The glutamatergic synapse often contains metabotropic receptors as well as ionotropic receptors. Type I metabotropic glutamate receptors are coupled to activation of protein kinase C, which has also been shown to mediate the immediate-early gene response to morphine. To determine if activation of metabotropic glutamate receptors is involved in rapid effects of morphine on the brain, rats were given the type I metabotropic glutamate receptor antagonist ( RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA; 0.2 mg/kg, i.p.) or vehicle 30 min before morphine treatment. Pretreatment with AIDA completely blocked morphine-induced c-Fos expression in the caudate-putamen. Taken together, these results demonstrate involvement of both AMPA and type I metabotropic glutamate receptors in the acute effects of morphine on the forebrain, supporting an important role for glutamatergic neurotransmission mediated by non-NMDA glutamate receptors in morphine's actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.