Abstract

Calcitonin gene-related peptide (CGRP) is a novel calcium-modulatory product of the gene that encodes for calcitonin. Acute administration of morphine decreases levels of CGRP in rat corpus striatum. Tolerance to morphine did not alter the levels of CGRP in any brain region or in the spinal cord of the rat. CGRP did not alter the tolerance to the antinociceptive effects of morphine. Chronic naltrexone increased the levels of CGRP in the hypothalamus. Concurrent chronic administration of naltrexone plus morphine raised the levels of CGRP in the medulla, midbrain, and spinal cord. CGRP enhances naloxone-precipitated withdrawal jumping in mice. In rats, during withdrawal the levels of CGRP were tripled in the corpus striatum and significantly reduced in the hippocampus and hypothalamus. In the corpus striatum, CGRP enhances forskolin-stimulated cyclic adenosine monophosphate (cAMP) accumulation when such accumulation is suppressed (as with the chronic opiate administration), but conversely depresses forskolin-stimulated cAMP accumulation under normal conditions (as with chronic vehicle administration). These data are consistent with the hypothesis that CGRP acts as a modulatory peptide in opiate-sensitive systems and tonic opioid control of CGRP levels exists in brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.