Abstract

Acute administration of morphine induces expression of the immediate-early gene (IEG) c-Fos in dorsomedial striatum, portions of cerebral cortex, and in several midline-intralaminar thalamic nuclei, partly via a trans-synaptic mechanism that involves activation of glutamate receptors. Because activation of protein kinase C (PKC) may occur following the activation of glutamate receptors, we determined whether pharmacological inhibition of PKC would attenuate morphine-induced c-Fos expression, and whether acute administration of morphine would induce translocation of PKC. The selective PKC antagonist NPC 15437 given 30 min prior to morphine significantly decreased morphine-induced c-Fos expression in striatum and cingulate cortex, but not in centrolateral thalamus. In another experiment, rats were given an acute dose of morphine, and immunocytochemical analysis was performed for the βI and βII isoforms of PKC. Morphine induced a rapid and transient translocation of PKC βII, but not βI, from perinuclear spots to plasma membrane in numerous cortical and striatal neurons. Prior administration of naloxone blocked this response. Ultrastructural studies confirmed translocation from Golgi apparatus to plasma membrane 15 min after morphine injection. Double immunocytochemistry at the light microscopic level demonstrated co-localization of translocated PKC βII and c-Fos in some cortical neurons 90 min after morphine injection. These results support a role for PKC, especially PKC βII, in the rapid effects of morphine on the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.