Abstract

Colour polymorphism occurs when two or more genetically-based colour morphs permanently coexist within an interbreeding population. Colouration is usually associated to other life-history traits (ecological, physiological, behavioural, reproductive …) of the bearer, thus being the phenotypic marker of such set of genetic features. This visual badge may be used to inform conspecifics and to drive those decision making processes which may contribute maintaining colour polymorphism under sexual selection context. The importance of such information suggests that other communication modalities should be recruited to ensure its transfer in case visual cues were insufficient. Here, for the first time, we investigated the potential role of proteins from femoral gland secretions in signalling colour morph in a polymorphic lizard. As proteins are thought to convey identity-related information, they represent the ideal cues to build up the chemical modality used to badge colour morphs. We found strong evidence for the occurrence of morph-specific protein profiles in the three main colour-morphs of the common wall lizard, which showed both qualitative and quantitative differences in protein expression. As lizards are able to detect proteins by tongue-flicking and vomeronasal organ, this result support the hypothesis that colour polymorphic lizards may use a multimodal signal to inform about colour-morph.

Highlights

  • Among the most intriguing phenomena able to recursively animate the debate and to stimulate theoretical work in evolutionary biology, colour polymorphism (CP) surely occupies a good standing[1,2]

  • The High Master Gels (HMG) generated by matching Y against W (Fig. 1) revealed that 47 (68.6%) spots were common to both phenotypes; 37 (27.0%) were unique of W and 6 (4.4%) exclusive of Y

  • The HMG produced when R was matched against W (Fig. 1) showed that 40 (57.6%) spots were common to both phenotypes; 44 (31.7%) were exclusive of W and 15 (10.8%) of R

Read more

Summary

Introduction

Among the most intriguing phenomena able to recursively animate the debate and to stimulate theoretical work in evolutionary biology, colour polymorphism (CP) surely occupies a good standing[1,2]. Since colour morph represents a genetic condition of the individual, not related to its body condition[97], selection should promote the coevolution of: (i) an encoding system of the information about the signaller’s morph, especially in the protein fraction of the femoral gland secretions, and (ii) a decoding system of protein fraction associated to the vomeronasal organ[54] of conspecific males or females. This would be the only way by which information may help individuals to drive behavioural choices and contribute to the CP maintenance[42,98]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.