Abstract

We describe a combinatorial approach to the analysis of the shape and orientation dependence of Wilson loop observables on two-dimensional noncommutative tori. Morita equivalence is used to map the computation of loop correlators onto the combinatorics of non-planar graphs. Several nonperturbative examples of symmetry breaking under area-preserving diffeomorphisms are thereby presented. Analytic expressions for correlators of Wilson loops with infinite winding number are also derived and shown to agree with results from ordinary Yang-Mills theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.