Abstract

Mastitis is a common veterinary clinical disease that restricts the development of dairy farming around the world. Morin, extracted from Mulberry Tree and other herbs, has been reported to possess the function of anti-bacteria, anti-oxidant, and anti-inflammatory. However, whether morin could protect lipopolysaccharide (LPS)-induced mouse mastitis in vivo has not well known. This study firstly aims to evaluate the effects of morin on LPS-induced mouse mastitis in vivo, and then try to illustrate the mechanism involved in the process. Before injected with LPS, mice were intraperitoneally pre-injected with different concentrations of morin, and mice of the control and LPS group were injected with the same amount of saline. Pathologic changes of mammary gland were determined by histopathological examination. Myeloperoxidase (MPO) activities of mammary gland were determined by the MPO kits. The mRNA expressions of inflammatory cytokines including TNF-α, IL-1β and IL-6, and those of chemokine factors CCL2 and CXCL2, and those of tight junctions occludin claudin-3 were examined by qRT-PCR analysis. The activities of IκB, p65, ERK, P38, AKT, PI3K, NLPR3, claudin-1, claudin-3 and occludin were determined by western blotting. The results showed that morin alleviated LPS-induced edema, destructed structures and infiltrated inflammatory cells of mammary gland. Morin administration significantly decreased LPS-induced TNF-α, IL-1β, IL-6, CCL2 and CXCL2 mRNA expressions. Furthermore, western blot analysis also showed that morin significantly reduced LPS-induced phosphorylation of p65, IκB, p38 and ERK, and enhanced LPS-induced phosphorylation of AKT and PI3K. It was also found that LPS-decreased claudin-3 and occludin expressions were also inhibited by morin treatment. In summary, above results suggest that morin indeed protect LPS-induced mouse mastitis in vivo, and the mechanism was through inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 signaling pathways and protecting the integrity of blood-milk barrier by regulating the tight junction proteins expressions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call