Abstract

The Mori-Zwanzig projection operator formalism is a powerful method for the derivation of mesoscopic and macroscopic theories based on known microscopic equations of motion. It has applications in a large number of areas including fluid mechanics, solid-state theory, spin relaxation theory, and particle physics. In its present form, however, the formalism cannot be directly applied to systems with time-dependent Hamiltonians. Such systems are relevant in many scenarios such as driven soft matter or nuclear magnetic resonance. In this article we derive a generalization of the present Mori-Zwanzig formalism that is able to treat also time-dependent Hamiltonians. The extended formalism can be applied to classical and quantum systems, close to and far from thermodynamic equilibrium, and even in the case of explicitly-time-dependent observables. Moreover, we develop a variety of approximation techniques that enhance the practical applicability of our formalism. Generalizations and approximations are developed for both equations of motion and correlation functions. Our formalism is demonstrated for the important case of spin relaxation in a time-dependent external magnetic field. The Bloch equations are derived together with microscopic expressions for the relaxation times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call