Abstract

In this article, we report an investigation, based on NMR and CD spectroscopic and electrophoretic techniques, of 5'TGGGGT3' analogues containing two or three 3'-3' or 5'-5' inversion sites in the G-run, namely 5'TG3'-3'G5'-5'GGT3' (Q350), 5'TG3'-3'GG5'-5'GT3' (Q305), 5'TGG3'-3'G5'-5'GT3' (Q035), 5'TG3'-3'G5'-5'G3'-3'GT5' (Q353) and 3'TG5'-5'G3'-3'G5'-5'GT3' (Q535). Although the sequences investigated contain either no or only one natural 3'-5' linkage in the G-tract, all modified oligodeoxyribonucleotides (ODNs) have been shown to form stable tetramolecular quadruplex structures. The ability of the 3'-3' or 5'-5' inversion sites to affect the glycosidic conformation of guanosines and, consequently, base stacking, has also been investigated. The results of this study allow us to propose some generalizations concerning strand arrangements and the glycosidic conformational preference of residues adjacent to inverted polarity sites. These rules could be of general interest in the design of modified quadruplex structures, in view of their application as G-wires and modified aptamers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.