Abstract

With their salient power distribution and privileged timescale for cognition and behavior, brainwaves within the 10 Hz band are special in human waking electroencephalography (EEG). From the inception of electroencephalographic technology, the contribution of alpha rhythm to attention is well-known: Its amplitude increases when visual attention wanes or visual input is removed. However, alpha is not alone in the 10 Hz frequency band. A number of other 10 Hz neuromarkers have function and topography clearly distinct from alpha. In small pilot studies, an activity that we named xi was found over left centroparietal scalp regions when subjects held their attention to spatially peripheral locations while maintaining their gaze centrally (“looking from the corner of the eyes”). I outline several potential functions for xi as a putative neuromarker of covert attention distinct from alpha. I review methodological aids to test and validate their functional role. They emphasize high spectral resolution, sufficient spatial resolution to provide topographical separation, and an acute attention to dynamics that caters to neuromarkers’ transiency.

Highlights

  • A crucial set of experiments by Michael Posner and colleagues [1] buttressed the theory that minds are equipped with a covert visual orienting system to enhance detection of targets even as they lie out of the foveal center of the participant’s overt visual attention

  • In a separate stream of research founded by Hans Berger in the 1920s [12,13], a rhythmic brain wave at about 10 Hz was shown to transpire from the scalp of human participants and reacted to such events as eye opening, involuntary attention to sudden startle from gunshot sound, other auditory, visual, olfactive, tactile, and pain stimuli, voluntary concentration, anesthesia, medications, and a variety of clinical conditions [12,13,14,15,16,17]

  • Xi was observed during covert attention tasks, execution and imagination of leg movements, imagination of someone else’s lifting and releasing a small object, and imagination of self-releasing a grasped object

Read more

Summary

Introduction

A crucial set of experiments by Michael Posner and colleagues [1] buttressed the theory that minds are equipped with a covert visual orienting system to enhance detection of targets even as they lie out of the foveal center of the participant’s overt visual attention. In a separate stream of research founded by Hans Berger in the 1920s [12,13], a rhythmic brain wave at about 10 Hz was shown to transpire from the scalp of human participants and reacted to such events as eye opening, involuntary attention to sudden startle from gunshot sound, other auditory, visual, olfactive, tactile, and pain stimuli, voluntary concentration, anesthesia, medications, and a variety of clinical conditions [12,13,14,15,16,17]. Alpha’s anticorrelation with attentive behavior was noted from the start [12,13,14] and continued to be observed [23] after warning signals of target occurrence [24] and in relation with many tasks derived from Posner’s cueing paradigm, consensually with a contralateral organization, that is, increase power opposite the stimulus side or

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call