Abstract

Spider silk is a striking and robust natural material that has an unrivaled combination of strength and elasticity. There are two major problems in creating materials from recombinant spider silk proteins (rSSps): expressing sufficient quantities of the large, highly repetitive proteins and solvating the naturally self-assembling proteins once produced. To address the second problem, we have developed a method to rapidly dissolve rSSps in water in lieu of traditional organic solvents and accomplish nearly 100% solvation and recovery of the protein. Our method involves generating pressure and temperature in a sealed vial by using short, repetitive bursts from a conventional microwave. The method is scalable and has been successful with all rSSps used to date. From these easily generated aqueous solutions of rSSps, a wide variety of materials have been produced. Production of fibers, films, hydrogels, lyogels, sponges, and adhesives and studies of their mechanical and structural properties are reported. To our knowledge, ours is the only method that is cost-effective and scalable for mass production. This solvation method allows a choice of the physical form of product to take advantage of spider silks' mechanical properties without using costly and problematic organic solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.