Abstract

Botulinum neurotoxin type A (BoNT/A) is a metalloprotease that produces a sustained yet transitory blockade of transmitter release from peripheral nerve terminals. Local delivery of this neurotoxin is successfully employed in clinical practice to reduce muscle hyperactivity such as in spasticity and dystonia, and to relieve pain with long-lasting therapeutic effects. However, not all BoNT/A effects can be explained by an action at peripheral nerve terminals. Indeed, it appears that BoNT/A is endowed with trafficking properties similar to the parental tetanus neurotoxin and thus be able to directly affect the CNS. In this review, we present and discuss novel compelling evidence for a direct central effect of BoNT/A in both dorsal and ventral horns of the animal and human spinal cord after peripheral injection of the neurotoxin, with important consequences on pain and motor control. This new knowledge is expected to radically change the approach to the use of BoNT/A in the future. As BoNT/A central action appears to also contribute to functional improvement, for instance in human spastic gait, the challenge will be to develop new subtypes or BoNT derivatives with deliberate, cell-specific central effects in order to fully exploit the spectrum of BoNT/A therapeutic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.