Abstract

Vectorless power grid verification algorithms, by solving linear programming (LP) problems under current constraints, enable worst-case voltage drop predictions at an early design stage. However, worst-case current patterns obtained by many existing vectorless algorithms are time-invariant (i.e., are constant throughout the simulation time), which may result in an overly pessimistic voltage drop prediction. In this paper, a more realistic power grid verification algorithm based on hierarchical current and power constraints is proposed. The proposed algorithm naturally handles general RCL power grid models. Currents at different time steps are treated as independent variables and additional power constraints are introduced; this results in more realistic time-varying worst-case current patterns and less pessimistic worst-case voltage drop predictions. Moreover, a sorting-deletion algorithm is proposed to speed up solving LP problems by utilizing the hierarchical constraint structure. Experimental results confirm that worst-case current patterns and voltage drops obtained by the proposed algorithm are more realistic, and that the sorting-deletion algorithm reduces runtime needed to solve LP problems by 85%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call