Abstract

The influence of manufacturing process thermal residual stresses and hydrostatic stresses on yielding behavior of unidirectional fiber reinforced composites has been investigated when subsequently subjected to various mechanical loadings. Three-dimensional finite element micro-mechanical models have been used. The results of this study reveal that the size of the initial yield surface is highly affected by the thermal residual and hydrostatic stresses. It was also found that effects of a uniform temperature change on the initial yield surface in the composite stress space is not equivalent to a solid translation of the surface in the direction of the hydrostatic stress axis. At the micro-level, magnitudes of various stress components within the matrix due to the thermal residual and hydrostatic stresses are different. However, at a macro-level, both temperature change and hydrostatic loading of composites show similar effects on the initial yield surface in the composite stress space. In an agreement with experimental data, results also show that residual stresses are responsible for asymmetric behavior of composites in uniaxial tension/compression in the fiber direction. This asymmetric behavior suggests that the existing quadratic yield criteria need modification to include thermal residual stress effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call