Abstract

The ‘operator entanglement’ of a quantum operator O is a useful indicator of its complexity, and, in one-dimension, of its approximability by matrix product operators. Here we focus on spin chains with a global U(1) conservation law, and on operators O with a well-defined U(1) charge, for which it is possible to resolve the operator entanglement of O according to the U(1) symmetry. We employ the notion of symmetry resolved operator entanglement (SROE) introduced in Rath et al (2023 PRX Quantum 4 010318) and extend the results of the latter paper in several directions. Using a combination of conformal field theory and of exact analytical and numerical calculations in critical free fermionic chains, we study the SROE of the thermal density matrix ρβ=e−βH and of charged local operators evolving in Heisenberg picture O=eitHOe−itH . Our main results are: i) the SROE of ρβ obeys the operator area law; ii) for free fermions, local operators in Heisenberg picture can have a SROE that grows logarithmically in time or saturates to a constant value; iii) there is equipartition of the entanglement among all the charge sectors except for a pair of fermionic creation and annihilation operators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call