Abstract

The inverse degree of a graph G with no isolated vertices is defined as the sum of reciprocal of vertex degrees of the graph G. In this paper, we obtain several lower and upper bounds on inverse degree ID(G). Moreover, using computational results, we prove our upper bound is strong and has the smallest deviation from the inverse degree ID(G). Next, we compare inverse degree ID(G) with topological indices (Randic index R(G), geometric-arithmetic index GA(G)) for chemical trees and also we determine the n-vertex chemical trees with the minimum, the second and the third minimum, as well as the second and the third maximum of ID - R. In addition, we correct the second and third minimum Randic index chemical trees in [16].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.