Abstract

Abstract Let G be a finite 2-group with the property that | H : H G | ≤ 2 ${|H:H_{G}|\leq 2}$ for all subgroups H of G. Then G has an abelian normal subgroup of index at most 4 in G. This result represents an affirmative answer to Question 18.56 from the current edition of the Kourovka Notebook.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.