Abstract
Uniform random satisfiability (URS) and hard random satisfiability (HRS) are two significant generalizations of random satisfiability (RS). Recently, great breakthroughs have been made on stochastic local search (SLS) algorithms for uniform RS, resulting in several state-of-the-art algorithms, e.g., Dimetheus, YalSAT, ProbSAT and Score2SAT. However, compared to the great progress of SLS on URS, the performance of SLS on HRS lags far behind. In this paper, we propose two global clause weighting schemes and a new hybrid scoring function called SA based on a linear combination of a property score and property age, and then apply a second-level-biased random walk strategy based on two clause weighting schemes and SA to develop a new SLS solver called BRSAP. To evaluate the performance of BRSAP, we conduct extensive experiments to compare BRSAP with state-of-the-art SLS solvers and complete solvers on HRS instances and URS instances from SAT Competition 2017 and SAT Competition 2018 as well as 4100 generated satisfiable large HRS and URS ones. The experiments illustrate that BRSAP obviously outperforms its competitors, indicating the effectiveness of BRSAP. We also analyze the effectiveness of the underlying ideas in BRSAP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.