Abstract
In this study, efforts were placed in giving some in vitro key clues to the question on which is more efficient for the cancer hyperthermia between intracellular and extracellular modalities. Near infrared (NIR) photothermal responsive gold nanorods (GNRs) were adopted to cause cellular thermolysis either from inside or outside of cells. GNRs were synthesized with the size of 30.4 nm (in length) × 8.4 nm (in width). Demonstrated by ICP-MS (inductively coupled plasmon mass spectroscopy), UV–Vis spectroscopy and transmission electron microscopy analyses, various cell uptake doses of nanoparticles were differentiated due to different molecular designs on GNRs surfaces and different types of cells chosen (three cancer cell lines and three normal ones). Under our continuous wavelengths (CW) NIR irradiation, it resulted that the cells which internalized GNRs died faster than the cells surrounded by GNRs. Furthermore, fluorescent images and flow cytometry data also showed that the NIR photothermal therapeutic effect was greater when the amount of internalized GNRs per cell was larger. Generally speaking, the GNRs assisted intracellular hyperthermia exhibited more precise and efficient control on the selective cancer ablation. To a larger degree, such a relationship between GNRs distribution and hyperthermia efficiency might be applied to wider spectra of cell types and heat-producing nanoparticles, which provided a promise for future cancer thermal therapeutic designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.