Abstract

There is a large literature devoted to the problem of finding an optimal (min-cost) prefix-free code with an unequal letter-cost encoding alphabet of size. While there is no known polynomial time algorithm for solving it optimally, there are many good heuristics that all provide additive errors to optimal. The additive error in these algorithms usually depends linearly upon the largest encoding letter size. This paper was motivated by the problem of finding optimal codes when the encoding alphabet is infinite. Because the largest letter cost is infinite, the previous analyses could give infinite error bounds. We provide a new algorithm that works with infinite encoding alphabets. When restricted to the finite alphabet case, our algorithm often provides better error bounds than the best previous ones known.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.