Abstract

SummaryRice is a staple food for half of the world's population. Changing climatic conditions, water and labour scarcity are the major challenges that shall limit future rice production. Dry direct‐seeded rice (DDSR) is emerging as an efficient, resources conserving, mechanized, climate smart and economically viable strategy to be adopted as an alternative to puddled transplanted rice (TPR) with the potential to address the problem of labour‐water shortages and ensure sustainable rice cultivation. Despite these benefits, several constraints obstruct the adoption of DDSR. In principle, the plant type for DDSR should be different from one for TPR, which could be achieved by developing rice varieties that combine the traits of upland and lowland varieties. In this context, recent advances in precise phenotyping and NGS‐based trait mapping led to identification of promising donors and QTLs/genes for DDSR favourable traits to be employed in genomic breeding. This review discusses the important traits influencing DDSR, research studies to clarify the need for breeding DDSR‐specific varieties to achieve enhanced grain yield, climate resilience and nutrition demand. We anticipate that in the coming years, genomic breeding for developing DDSR‐specific varieties would be a regular practice and might be further strengthened by combining superior haplotypes regulating important DDSR traits by haplotype‐based breeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.