Abstract
We give further evidence that genus-one fibers with multi-sections are mirror dual to fibers with Mordell-Weil torsion. In the physics of F-theory compactifications this implies a relation between models with a non-simply connected gauge group and those with discrete symmetries. We provide a combinatorial explanation of this phenomenon for toric hypersurfaces. In particular this leads to a criterion to deduce Mordell-Weil torsion directly from the polytope. For all 3134 complete intersection genus-one curves in three-dimensional toric ambient spaces we confirm the conjecture by explicit calculation. We comment on several new features of these models: The Weierstrass forms of many models can be identified by relabeling the coefficient sections. This reduces the number of models to 1024 inequivalent ones. We give an example of a fiber which contains only non-toric sections one of which becomes toric when the fiber is realized in a different ambient space. Similarly a singularity in codimension one can have a toric resolution in one representation while it is non-toric in another. Finally we give a list of 24 inequivalent genus-one fibers that simultaneously exhibit multi-sections and Mordell-Weil torsion in the Jacobian. We discuss a self-mirror example from this list in detail.
Highlights
In the physics of F-theory compactifications this implies a relation between models with a non- connected gauge group and those with discrete symmetries
They are mapped under a group homomorphism called the Shioda map [3] into the group of vertical divisors in the fourfold
The principality reflects the fact that this is the image of a torsional section under a group homomorphism
Summary
In this section we show that the degree of the Mordell-Weil torsion and the presence of multi-sections can be read off directly from the toric diagram and the polar polytope.6 Moreover we show that the torsion Shioda map (1.3) follows, up to base divisors, immediately from this data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.