Abstract

BackgroundMoraxella catarrhalis causes approximately 10% of exacerbations in chronic obstructive pulmonary disease (COPD) and also colonizes the lower airway in stable patients. Little is known about the effects of colonization by M. catarrhalis on airway inflammation and protease-antiprotease balance, and how these changes compare to those seen during exacerbations. Since COPD is a progressive inflammatory disease, elucidating the effects of bacterial colonization and exacerbation on airway inflammation is relevant to understanding disease progression in COPD. Our aims were (1) Analyze changes in airway inflammation in colonization and exacerbation of COPD due to M. catarrhalis; (2) Explore protease-antiprotease balance in colonization and exacerbation due to M. catarrhalis. Our hypothesis were (1) Acquisition of a new strain of M. catarrhalis in COPD increases airway inflammation from baseline and alters the protease-antiprotease balance towards a more proteolytic environment; (2) These changes are greater during exacerbations associated with M. catarrhalis as compared to colonization.MethodsThirty-nine consecutive COPD patients with 76 acquisitions of a new strain of M. catarrhalis over a 6-year period were identified in a prospective study. Seventy-six pre-acquisition sputum supernatant samples, obtained just before acquisition of M catarrhalis, and 76 acquisition samples (34 were associated with exacerbation, 42 with colonization) were analyzed for IL-8, TNF-α, Neutrophil Elastase (NE) and Secretory leukocyte protease inhibitor (SLPI). Changes were compared in paired samples from each patient.ResultsIL-8, TNF-α and NE were significantly elevated after acquisition of M. catarrhalis, compared to pre-acquisition samples (p =< 0.001 for all three). These changes were present in colonization (p = 0.015 for IL-8; p =< 0.001 for TNF-α and NE) as well as in exacerbation (p =< 0.001 for all three), compared to pre-acquisition levels. SLPI was significantly lower after acquisition (p =< 0.001), in colonization (p =< 0.001) as well as in exacerbation (p = 0.004), compared to pre-acquisition levels. SLPI levels correlated negatively with NE levels (R2 = 0.07; p = 0.001).ConclusionAcquisition of M. catarrhalis in COPD causes increased airway inflammation and worsening protease-antiprotease imbalance during exacerbations and also in colonization, even in the absence of increased symptoms. These effects could contribute to progression of airway disease in COPD.

Highlights

  • Moraxella catarrhalis causes approximately 10% of exacerbations in chronic obstructive pulmonary disease (COPD) and colonizes the lower airway in stable patients

  • The course of COPD is punctuated by acute exacerbations, which are characterized by worsening respiratory symptoms, enhanced airway inflammation [5,6] and deterioration of lung function [7]

  • Samples and Subjects Out of a total of 120 M. catarrhalis new strain acquisitions during the period 1994-2000, 76 acquisition samples were available for analysis

Read more

Summary

Introduction

Moraxella catarrhalis causes approximately 10% of exacerbations in chronic obstructive pulmonary disease (COPD) and colonizes the lower airway in stable patients. Half of COPD exacerbations are caused by bacterial pathogens including nontypeable Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae and Pseudomonas aeruginosa [9,10,11,12] These same pathogenic bacteria can be found in the lower airways of 30%-40% of COPD patients in the absence of symptoms of an acute exacerbation. This 'colonization' by potential pulmonary pathogens is associated with increased airway inflammation; these observations have been confined to cross-sectional studies [13,14,15]. A direct comparison between airway inflammation associated with colonization and exacerbation in the same patient population has not been described

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call