Abstract

Background Found as a commensal in the upper respiratory tract, Gram-negative diplococcus Moraxella catarrhalis did not hold much importance as an infectious agent for long. The emergence of the first antibiotic-resistant strain of M. catarrhalis was noted in 1977 in Sweden. This has gradually spread worldwide over the years to more than 95% of the strains showing resistance to penicillin now. Penicillin resistance is mediated by the production of beta-lactamases encoded by bro-1 and bro-2 genes that code for beta-lactamases BRO-1 and BRO-2, respectively. The purpose of this study was to explore the trends of antibiotic resistance, the presence of bro genes, and clinical correlation of these findings with the rise in M. catarrhalis was noted in 1977 in Sweden. This has gradually spread worldwide over the years to more than 95% of the strains showing resistance to penicillin now. Penicillin resistance is mediated by the production of beta-lactamases encoded by bro-1 and bro-2 genes that code for beta-lactamases BRO-1 and BRO-2, respectively. The purpose of this study was to explore the trends of antibiotic resistance, the presence of bro genes, and clinical correlation of these findings with the rise in Methods Strains of M. catarrhalis was noted in 1977 in Sweden. This has gradually spread worldwide over the years to more than 95% of the strains showing resistance to penicillin now. Penicillin resistance is mediated by the production of beta-lactamases encoded by bro-1 and bro-2 genes that code for beta-lactamases BRO-1 and BRO-2, respectively. The purpose of this study was to explore the trends of antibiotic resistance, the presence of bro genes, and clinical correlation of these findings with the rise in Results Fourteen strains of M. catarrhalis was noted in 1977 in Sweden. This has gradually spread worldwide over the years to more than 95% of the strains showing resistance to penicillin now. Penicillin resistance is mediated by the production of beta-lactamases encoded by bro-1 and bro-2 genes that code for beta-lactamases BRO-1 and BRO-2, respectively. The purpose of this study was to explore the trends of antibiotic resistance, the presence of bro genes, and clinical correlation of these findings with the rise in Conclusion The increase in antibiotic resistance and beta-lactamase production in M. catarrhalis is a cause of concern. The emerging resistance pattern emphasises the need for an appropriate antibiotic stewardship program in clinical practice. Importance should be given to the monitoring of the trends of antibiotic susceptibility and their usage to prevent the emergence of outbreaks with resistant strains and treatment failures.M. catarrhalis was noted in 1977 in Sweden. This has gradually spread worldwide over the years to more than 95% of the strains showing resistance to penicillin now. Penicillin resistance is mediated by the production of beta-lactamases encoded by bro-1 and bro-2 genes that code for beta-lactamases BRO-1 and BRO-2, respectively. The purpose of this study was to explore the trends of antibiotic resistance, the presence of bro genes, and clinical correlation of these findings with the rise in

Highlights

  • WHO has recognised antibiotic resistance as a global threat

  • 72% of the isolates were obtained from male patients. 64% of the isolates were from patients above 40 years of age (Figure 3) and most were associated with chronic obstructive pulmonary disease (COPD), asthma, pneumoniae, or related conditions (Table 1)

  • A total of 13 patients with infections with M. catarrhalis were managed on an inpatient basis, and one patient was treated on an outpatient basis

Read more

Summary

Introduction

What were earlier considered as harmless infections have become very difficult to treat because they are caused by organisms that have developed resistance to commonly used antibiotics. One such organism, in which the rise in antibiotic resistance has been alarmingly high, is Moraxella catarrhalis. E purpose of this study was to explore the trends of antibiotic resistance, the presence of bro genes, and clinical correlation of these findings with the rise in M. catarrhalis infections worldwide. Importance should be given to the monitoring of the trends of antibiotic susceptibility and their usage to prevent the emergence of outbreaks with resistant strains and treatment failures

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call