Abstract
We revisit Moravcsik's theorem on the unique extraction of amplitudes from polarization observables, which has been originally published in 1985. The proof is (re-) written in a more formal and detailed way and the theorem is corrected for the special case of an odd number of amplitudes (this case was treated incorrectly in the original publication). Moravcsik's theorem, in the modified form, can be applied in principle to the extraction of an arbitrary number of $N$ helicity amplitudes. The uniqueness theorem is then applied to hadronic reactions involving particles with spin. The most basic example is Pion-Nucleon scattering ($N=2$), the first non-trivial example is pseudoscalar meson photoproduction ($N=4$) and the most technically involved case treated here is given by pseudoscalar meson electroproduction ($N=6$). The application of Moravcsik's theorem to electroproduction yields new results, which for the first time provide insights into the structure and content of complete sets for this particular process. The uniqueness-statements for the various reactions are compared and an attempt is made to recognize general patterns, which emerge under the application of the theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.