Abstract

With a high specific capacity, MoP2 has been identified as an ideal electrode material for LIBs. However, the specific capacity is negatively affected due to its poor conductivity and severe volume expansion during insertion and extraction of Li+. In this paper, MoP2-C synthesized by using a Mo-MOF as a precursor, with the generation of C, can effectively solve the agglomeration problem in the synthesis process and alleviate serious volume changes during cycling. Due to the lack of carbon sources provided by a Mo-MOF, the conductivity of MoP2-C cannot be greatly improved. Therefore, rGO and PPy are added to improve the conductivity of MoP2 and further increase the stability of the structure. Compared with MoP2/C and MoP2/C@PPy, MoP2/C@rGO exhibits the highest initial discharge specific capacity of 1208 mA h g-1 at a current density of 100 mA g-1 and rate performances of 830, 750, 630, 550, and 430 mA h g-1 with the current density increasing from 100 mA g-1 to 2000 mA g-1. Notably, the specific capacity remains at 640 mA h g-1 at a current density of 100 mA g-1 after 100 cycles. Followed by 200 cycles at a current density of 2000 mA h g-1, the specific capacity remains at 395 mA h g-1 with a capacity retention rate of 80%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.