Abstract

Crystalline and amorphous molybdenum sulfide (Mo-S) catalysts are leaders as earth-abundant materials for electrocatalytic hydrogen production. The development of a molecular motif inspired by the Mo-S catalytic materials and their active sites is of interest, as molecular species possess a great degree of tunable electronic properties. Furthermore, these molecular mimics may be important for providing mechanistic insights toward the hydrogen evolution reaction (HER) with Mo-S electrocatalysts. Herein is presented two water-soluble Mo-S complexes based around the [MoO(S2)2L2]1- motif. We present 1H NMR spectra that reveal (NEt4)[MoO(S2)2picolinate] (Mo-pic) is stable in a d6-DMSO solution after heating at 100 °C, in air, revealing unprecedented thermal and aerobic stability of the homogeneous electrocatalyst. Both Mo-pic and (NEt4)[MoO(S2)2pyrimidine-2-carboxylate] (Mo-pym) are shown to be homogeneous electrocatalysts for the HER. The TOF of 27-34 s-1 and 42-48 s-1 for Mo-pic and Mo-pym and onset potentials of 240 mV and 175 mV for Mo-pic and Mo-pym, respectively, reveal these complexes as promising electrocatalysts for the HER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.