Abstract

This paper presents results from extensive small-scale model testing of three semi submersibles together with an overview of damping contributions of low frequency motions. The objectives of the model tests were to verify empirical correction formulas for viscous wave drift forces and to recommend and validate theoretical low frequency damping models. The main parameters of the semis such as displacement, number of columns and diameter of columns were intentionally varied in order to assess the effects on total wave drift forces and corresponding damping. The results show that viscous effects significantly increase the total wave drift forces in extreme sea states. The presence of current increases the effect. As expected, the viscous contribution to wave drift is especially important for semis with slender columns. A revised empirical correction formula for wave drift forces is proposed based on model test results. An overview of the different low frequency damping effects is given. Damping from viscous forces on the hull and damping from the mooring system are the most important sources of damping for the moored semis. A simplified model to calculate mooring system damping is proposed. For accurate prediction of low frequency motions of moored semi submersibles in extreme sea states, a damping level in the range 40–70% of critical damping should be applied for surge and sway when the empirical correction formulas for wave drift forces are applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.