Abstract
AbstractWe show that under mild conditions, the connected sum $M\# N$ of simply connected, closed, orientable n-dimensional Poincaré Duality complexes M and N is hyperbolic and has no homotopy exponent at all but finitely many primes, verifying a weak version of Moore’s conjecture. This is derived from an elementary framework involving $CW$ -complexes satisfying certain conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.