Abstract

Bioassay-guided fractionation of a collection of Moorea bouillonii from Papua New Guinea led to the isolation of a new alkyl amide, mooreamide A (1), along with the cytotoxic apratoxins A-C and E. The planar structure of 1 was elucidated by NMR spectroscopy and mass spectrometry analysis. Structural homology between mooreamide A and the endogenous cannabinoid ligands, anandamide, and 2-arachidonoyl glycerol inspired its evaluation against the neuroreceptors CB(1) and CB(2). Mooreamide A was found to possess relatively potent and selective ligand binding activity to CB(1) (K(1) = 0.47 µM) versus CB(2) (K(1) > 25 µM). This represents the most potent marine-derived CB(1) ligand described to date and adds to the growing family of marine metabolites that exhibit cannabinomimetic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.