Abstract
Montmorillonite (MMT)–multiwalled carbon nanotube (MWCNT) hybrids were prepared in different weight ratios by simple dry grinding method and characterized. Subsequently, MMT–MWCNT (1:1) hybrid was used as reinforcing filler in developing thermoplastic polyurethane (TPU) nanocomposites by solution blending method. Thermogravimetric analysis showed that 0.25 wt% hybrid‐loaded TPU nanocomposite exhibited maximum enhancement of 31°C corresponding to 50 wt% loss in thermal stability when compared with neat TPU. Differential scanning calorimetry of this composite also indicated that its crystallization and melting temperatures are enhanced by 37 and 13°C, respectively. Mechanical data showed that tensile strength and Young's modulus of 0.50 wt% filled TPU were maximum improved by 57 and 87.5%, respectively. Dynamic mechanical analysis (DMA) measurements indicated 174% (50°C) improvement in storage modulus of 0.50 wt% hybrid‐loaded TPU. Such improvements in thermal and mechanical properties have been attributed to homogeneous dispersion, strong interfacial interaction, and synergistic effect. POLYM. COMPOS., 37:1775–1785, 2016. © 2014 Society of Plastics Engineers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.