Abstract

To increase antibacterial activity and reduce the cytotoxicity of copper nanoparticles (CuNPs), we used reduced graphene oxide with montmorillonite to support CuNPs and fixed CuNPs on reduced graphene oxide to synthesize the hybrid montmorillonite-reduced graphene oxide copper nanoparticles (MMT-rGO-CuNPs). The synthesized MMT-rGO-CuNPs complex showed a stronger antibacterial activity against Gram-positive bacteria S. aureus than Gram-negative E. coli. This may be due to the protective effect of the outer membrane of E. coli, as well as the fact that the MMT-rGO-CuNPs complex adsorbs S. aureus more strongly than E. coli. The hybrid molecule's antibacterial efficacy is the combined result of the synergistic effects of electrostatic adsorption and copper ion sterilization ability. At the same time, the MMT-rGO-CuNPs complex exhibits a lower cytotoxicity than PVP-CuNPs and provides a biocompatible composite material with a reduced cytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.