Abstract

Adsorption properties of the clay mineral montmorillonite in the potassium homoionic form (KMT) was investigated to achieve the extraction and concentration of the herbicides atrazine (AT) and propazine (PROP), as well as the main degradation products of atrazine, namely deethylatrazine (DEA), deisopropylatrazine (DIA) and hydroxyatrazine (ATOH). A batch approach was proposed, with recovery percentages for AT, PROP and DIA higher than 90% at concentrations of 0.50 and 2.50 μg L −1. For DEA and ATOH, however, low recoveries were obtained. For DEA, this fact can be explained by its low K d with KMT, contrary to ATOH, which interacts strongly with the mineral surface, hindering the complete desorption and hence, generating low recovery percentages. The influence of pH, ionic strength and humic acid was studied, and a comparison with the C 18 phase as SPE cartridges was carried out. Montmorillonite showed a similar performance to commercial cartridge for concentrations of AT, DEA and PROP, but better recoveries for DIA was obtained using the clay mineral. For ATOH the recovery was also higher on the clay mineral, although for this compound the most suitable SPE cartridge is constituted by cation exchange resin. After the concentration and elution steps, the 0.50 and 2.50 μg L −1 gave chromatographic peak areas that could be easily quantified with an analytical curve obtained in the concentration range between 7.5 and 100 μg L −1. The obtained concentration factors are suitable to allow the application of the method to the monitoring of triazine residues in drinking water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.