Abstract
Using narrowband and broadband solar radiation measurements collected at Wudaoliang (WDL) site in northern Tibetan Plateau (NTP) from September 1993 to December 1998, the relationship between monthly photosynthetically active radiation ( Q P ) and global solar radiation ( R S ) values is analyzed. Temporal variability of the ratio ( Q P / R S ) and its further dependence on several meteorological variables are presented. The narrowband ratio exhibited diurnal and seasonal variability with high values during morning and afternoon hours and low values around noon in winter time, whereas during summer period the ratio was decreased from morning to afternoon. The ratio ( Q P / R S ) was correlated positively with several atmospheric parameters such as water vapor pressure and low-level cloud amount; in contrast, the ratio was negatively correlated with clearness index, relative sunshine duration and atmospheric turbidity. It was also found that both the relative sunshine duration and water vapor pressure are the most influential parameters on the estimations of the spectral PAR ratio. Finally, an empirically derived model is proposed for estimating monthly average PAR values over the northern Tibetan Plateau. Verification results further ensured that the proposed model predicts monthly global PAR values accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.