Abstract
Precipitation forecasting is essential for sectors such as water resources management and urban planning. In this study, a deep learning model was developed to predict rainfall in Brazilian cities, focusing on the municipality of Barra Mansa, Rio de Janeiro. Four neural network architectures were tested: FCN, Resnet, ResCNN and InceptionTime. Among them, FCN stood out significantly, presenting the lowest error rates and the best overall adjustment. The study highlights the ability of deep learning, especially through the FCN (Fully Convolutional Network - Segmented) architecture, to make accurate predictions and uncover hidden rainfall patterns. Such discoveries have great potential to improve rainfall forecasting systems and assist in decision-making in areas that require accurate climate information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.