Abstract

Quantitative and qualitative monthly precipitation forecasts are produced with ANFIS. To select the proper input variable set from 30 variables, including climatological and hydrological monthly recording data, the forward selection method, which is a wrapper method for feature selection, is applied. The error analysis of the results from training and checking the data sets suggests that 3 variables can be used as a suitable number of inputs for ANFIS, and the best five 3-input-variable sets were selected. The quantitative monthly precipitation forecasts were computed using each 3-input-variable set, and the ensemble averaging method over the five forecasts was used for calculations to reduce the uncertainties in the forecasts and to remove the negative rainfall forecasts. A qualitative forecast that is computed with the quantitative forecast also produced three types of categories that describe the next month’s precipitation condition and was compared with data from the weather agency of Korea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.