Abstract

Proposing relevant catalyst descriptors that can relate the information on a catalyst's composition to its actual performance is an ongoing area in catalyst informatics, as it is a necessary step to improve our understanding on the target reactions. Herein, a small descriptor-engineered data set containing 3289 descriptor variables and the performance of 200 catalysts for the oxidative coupling of methane (OCM) is analyzed, and a descriptor search algorithm based on the workflow of the Basin-hopping optimization methodology is proposed to select the descriptors that better fit a predictive model. The algorithm, which can be considered wrapper in nature, consists of the successive generation of random-based modifications to the descriptor subset used in a regression model and adopting them depending on their effect on the model's score. The results are presented after being tested on linear and Support Vector Regression models with average cross-validation r2 scores of 0.8268 and 0.6875, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.