Abstract

Luminescent solar concentrator (LSC) devices emerge as a promising technology to reduce the cost of electricity generated by photovoltaic solar cells. Here, we demonstrate the detailed fabrication process of non-crystalline LSC prototype devices based on all-inorganic perovskite quantum dots (QDs) for the first time. The as-prepared all-inorganic perovskite QDs show many advantages, such as tunable absorption spectrum over the entire visible spectral region, high photoluminescence (PL) quantum yield (QY) up to 50%, and narrow emission line widths with FWHM (full width at half maximum) of 17–26 nm, which may greatly improve the optical efficiency of LSC prototype devices. On the optimal doping concentrations, Monte Carlo ray-tracing simulations indicate the LSC prototype devices have an extremely high average optical efficiency, which is 1.22% for CsPbCl3 QDs, 5.43% for CsPbBr3 QDs, and 7.39% for CsPbI3 QDs, respectively. We anticipate these potential high-efficiency LSC prototype devices based on perovskite QDs will shed light on future research of large-scale and high-performance LSCs applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call