Abstract

One of the current tendencies is to equip the unguided munition designed for ballistic shooting with low cost, solid propellant lateral thrusters based, actuators to achieve the controlled flight functionality and reduce the collateral damage. The basic technical challenge connected with this type of pulsed control system is that each from the thrusters could be used only once which results in projectile low control authority. The thruster parameters have crucial impact on the achieved hit accuracy. The main goal of this article was to investigate and understand the influence of control force magnitude on the guidance process using six-degree-of-freedom numerical simulation. 122 mm artillery rocket controlled with the aim of 30 solid propellant thrusters mounted before center of mass was chosen as a test object. Single channel control was considered. The impact point prediction algorithm based on point mass model was developed and implemented into a Matlab software. Using Monte-Carlo simulations the optimum lateral thruster force amplitude was obtained for shots at low elevation angle. The numerical experiments showed that with the proposed method the circular error probable of the projectile might be reduced 10 times when compared to unguided case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.