Abstract

We develop the second-order Monte Carlo wavefunction (MCWF) approach to the exciton dynamics of molecular aggregate systems composed of dipole-coupled two-state monomers. The explicit form of Lindblad operator, which is indispensable for applying the MCWF approach, for population relaxation among exciton states is derived based on the quantum master equation involving weak exciton–phonon coupling. The exciton migration behaviors obtained by the MCWF approach are turned out to coincide with those by the conventional master equation approach, indicating the high potential of the MCWF approach to the dissipative exciton dynamics of extended molecular aggregates or supermolecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.