Abstract

In this work we focus on the study of phase separation in the zero-bandwidth extended Hubbard with nearest-neighbors intersite Ising-like magnetic interactions $J$ and on-site Coulomb interactions $U$. The system has been analyzed by means of Monte Carlo simulations (in the grand canonical ensemble) on two dimensional square lattice (with $N=L\times L =400$ sites) and the results for $U/(4J)=2$ as a function of chemical potential and electron concentration have been obtained. Depending on the values of interaction parameters the system exhibits homogeneous (anti-)ferromagnetic (AF) or non-ordered (NO) phase as well as phase separation PS:AF/NO state. Transitions between homogeneous phases (i.e. AF-NO transitions) can be of first or second order and the tricritical point is also present on the phase diagrams. The electron compressibility $K$ is an indicator of the phase separation and that quantity is of particular interest of this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call