Abstract
We study properties of magnetic nanoparticles adsorbed on the halloysite surface. For that a distinct magnetic Hamiltonian with random distribution of spins on a cylindrical surface was solved by using a nonequilibrium Monte Carlo method. The parameters for our simulations: anisotropy constant, nanoparticle size distribution, saturated magnetization and geometrical parameters of the halloysite template were taken from recent experiments. We calculate the hysteresis loops and temperature dependence of the zero field cooling (ZFC) susceptibility, which maximum determines the blocking temperature. It is shown that the dipole-dipole interaction between nanoparticles moderately increases the blocking temperature and weakly increases the coercive force. The obtained hysteresis loops (e.g., the value of the coercive force) for Ni nanoparticles are in reasonable agreement with the experimental data. We also discuss the sensitivity of the hysteresis loops and ZFC susceptibilities to the change of anisotropy and dipole-dipole interaction, as well as the 3d-shell occupation of the metallic nanoparticles; in particular we predict larger coercive force for Fe, than for Ni nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.