Abstract

An optimization of anti-scatter grid design using Monte Carlo techniques in diagnostic radiology is presented. The criterion for optimization was to find the combinations of the grid parameters (lead strip width, grid ratio and strip density) and tube potential which result in the lowest mean absorbed dose in the patient at fixed image contrast. The optimization was performed in three irradiation geometries, representing different scattering conditions (paediatric examinations, and two adult lumbar spine examinations) and was restricted to grids using fibre materials in covers and interspaces. Grid designs currently available were studied, as were designs which use thinner strips (< 30 microns) and higher grid ratios (> 18). It was found that grids with widely different strip densities (strips cm-1) and grid ratios can have good performance provided that they are used with appropriate strip width and tube potential. With increasing amounts of scatter, the optimal grid requires thicker strips and higher grid ratios. Increasing the strip density and using thinner strips and higher grid ratios are generally required. Grids with low strip density (25 strips cm-1) were found to be less sensitive to alterations in strip width. Optimal grids for paediatric radiology require thinner strips (10-20 microns) than those in currently available grids. Grids on the market are best suited for examinations of the adult body in anteroposterior (AP) view. In the adult lateral view, representing the largest scattering volume, higher grid ratios (> 18) than those in existing grids would be optimal. Examples of good grid designs are given for each examination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.