Abstract
We have established the solid-fluid coexistence region for a system of polydisperse hard spheres with near Gaussian diameter distributions, as a function of polydispersity. Our approach employs Monte Carlo simulation in the isobaric semigrand ensemble with a Gaussian activity distribution. Gibbs-Duhem integration is used to trace the coexistence pressure as a function of the variance of the imposed activity distribution. Significantly, we observe a ``terminal'' polydispersity above which there can be no fluid-solid coexistence. The terminus arises quite naturally as the Gibbs-Duhem integration path leads the pressure to infinity. This pressure divergence is an artifact of the method used to evaluate the freezing transition, because the sphere diameters vanish in this limit. A simple rescaling of the pressure with the average diameter brings the terminal pressure to a finite value. Nevertheless, the existence of this terminus only at infinite pressure precludes the construction of a continuous path from the solid to the fluid. At the terminus the polydispersity is 5.7% for the solid and 11.8% for the fluid while the volume fractions are 0.588 and 0.547 for the solid and fluid, respectively. Substantial fractionation observed at high values of the polydispersity (\ensuremath{\gtrsim}5%) implies that the ``constrained eutectic'' assumption made in previous theoretical studies is not generally valid. Our results for the terminal polydispersity are consistent with experiments performed on polydisperse colloidal suspensions. \textcopyright{} 1996 The American Physical Society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.