Abstract

We study self-avoiding walks on the four-dimensional hypercubic lattice via Monte Carlo simulations of walks with up to one billion steps. We study the expected logarithmic corrections to scaling, and find convincing evidence in support the scaling form predicted by the renormalization group, with an estimate for the power of the logarithmic factor of 0.2516(14), which is consistent with the predicted value of 1/4. We also characterize the behaviour of the pivot algorithm for sampling four-dimensional self-avoiding walks, and conjecture that the probability of a pivot move being successful for an $N$-step walk is $O([ \log N ]^{-1/4})$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.