Abstract

Dynamic Monte Carlo simulations of long chains confined to a cubic lattice system at a polymer volume fraction of φ=0.5 were employed to investigate the dynamics of polymer melts. It is shown that in the range of chain lengths n, from n=64 to n=800 there is a crossover from a weaker dependence of the diffusion coefficient on chain length to a much stronger one, consistent with D∼n−2. Since the n−2 scaling relation signals the onset of highly constrained dynamics, an analysis of the character of the chain contour motion was performed. We found no evidence for the well-defined tube required by the reptation model of polymer melt dynamics. The lateral motions of the chain contour are still large even in the case when n=800, and the motion of the chain is essentially isotropic in the local coordinates. Hence, the crossover to the D∼n−2 regime with increasing chain length of this monodisperse model melt is not accompanied by the onset of reptation dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.