Abstract

Monte Carlo simulations of dislocation vector systems with long-range interactions reveal two possible types of phase transitions depending on the core energy of dislocations. For dislocations with a large core energy the melting transition is found to be continuous and due to dislocation unbinding. The Kosterlitz-Thouless theory agrees well with the simulation results. For a small core energy the melting transition is caused by the nucleation of grain boundary loops and is found to be first order. The latter transition may correspond to the previous computer experiments on various atomic systems. In addition to thermodynamic quantities such as the energy and specific heat, microscopic configurations and orientational correlation functions are also calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.