Abstract

ABSTRACTThe tight-binding model with repulsive Hubbard interactions represents an ideal prototype for the study of strong correlations. While exact numerical methods have been used with some success, they are typically limited by the size of the clusters that can be investigated or by the temperatures that can be reached. Variational methods, on the other hand, often require considerable advance knowledge of ground-state properties. The method presented here alleviates this problem by augmenting the variational approach with a scheme similar to Lanczos iterations thus bridging the gap between exact diagonalization and variational approaches. For the t-J model, the low-energy effective Hamiltonian of the Hubbard model, material properties like broken translational invariance or superconducting correlations are then investigated and a region of stability of a superconducting phase is found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.