Abstract

Reliable treatment planning of highly conformal scanned ion beam therapy demands accurate tools for the determination and characterization of the individual pencil-like beams building up the integral dose delivery and related mixed radiation field. At present, clinically practicable inverse treatment planning systems (TPSs) can only rely on fast-performing analytical algorithms. However, the rapidly emerging though more computationally intensive Monte Carlo (MC) methods can be employed to complement analytical TPS, e.g., via accurate calculations of the input beam-model data, together with a considerable reduction of the measuring time. Here we present the work done for the application of the FLUKA MC code to support several aspects of scanned ion beam delivery and treatment planning at the Heidelberg Ion Beam Therapy Center (HIT). Emphasis is given to the generation of the accelerator library and of experimentally validated TPS input basic data which are now in clinical use for proton and carbon ion therapy. Additionally, MC dose calculations of planned treatments in water are shown to represent a valuable tool for supporting treatment plan verification in comparison to dosimetric measurements. This paper can thus provide useful information and guidelines for the start-up and clinical operation of forthcoming ion beam therapy facilities similar to HIT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.